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Abstract

In free-field photovoltaic (FFPV) systems, grassland integration offers dual land use, but measuring 
vegetation beneath photovoltaic (PV) modules is challenging. Traditional methods like the rising 
plate meter (RPM) lack spatial continuity, and remote sensing often struggles to capture the area 
below the modules. Here, a handheld simultaneous localization and mapping (SLAM) light detection 
and ranging (LiDAR) system captured high-resolution 3D data of grass swards in an FFPV site. 
LiDAR-derived canopy height metrics correlated strongly with RPM measurements (R² up to 0.88 
in open areas, 0.75 under PV modules). Handheld SLAM LiDAR thus provides an efficient means 
to assess grass structure in complex environments, supporting precision pasture management and 
environmental monitoring.
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Introduction

The expansion of free-field photovoltaic (FFPV) systems over grasslands has created novel 
opportunities for dual land use, combining renewable energy generation with sustainable agricultural 
practices such as livestock grazing (Hamidi et al., 2024; Zahrawi and Aly, 2024). This co-use of land 
for energy and pasture management is promising for regions aiming to balance environmental 
and agricultural goals (Hamidi et al., 2024), but it also introduces unique challenges in assessing 
vegetation growth beneath photovoltaic modules (Soto-Gómez, 2024). Accurately quantifying 
biomass in these partially shaded areas is essential for evaluating how PV panels influence both the 
agronomic value of the pasture and its ecological conditions.
Traditional ground-based techniques for measuring biomass, such as the rising plate meter (RPM) 
and sward stick, offer only localized measurements that fail to capture the spatially continuous data 
(Bareth and Schelberg, 2018). Similarly, remote sensing methods commonly used in agricultural 
biomass estimation, such as satellite and aerial imaging, are limited under PV modules because of 
shading effects that reduce visibility and accuracy in obstructed areas (Lu, 2006).
Light detection and ranging (LiDAR) scanning, particularly when mounted on uncrewed aerial 
vehicles (UAVs), has recently emerged as a spatially consistent and efficient tool for estimating 
grassland biomass (Wang et al., 2017). The LiDAR scanners generate three-dimensional point 
clouds by emitting laser beams and measuring their return time. By capturing the canopy’s three-
dimensional structure, these point clouds facilitate the estimation of vertically dependent grassland 
traits, including biomass.
Handheld LiDAR systems, unlike UAV-mounted LiDAR, enable direct data collection beneath 
PV modules, avoiding issues such as obstructions and flight clearance requirements. Additionally, 
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simultaneous localization and mapping (SLAM) technology ensures precise mapping without 
reliance on GNSS, making it effective in areas with poor signal reception (Wei et al., 2024). De 
Nobel et al. (2023) have already demonstrated the potential of using handheld SLAM LiDAR 
scanners to estimate grassland biomass. Handheld SLAM LiDAR systems seem particularly suited 
for environments with limited accessibility, such as shaded areas beneath photovoltaic (PV) modules.
This study presents a case where a handheld SLAM LiDAR system was used to analyse grass sward 
structure as a proxy for biomass under PV modules, enabling continuous, high-resolution data 
collection of vertical vegetation structures.
Study area and methods

Study area
The study area was in an FFPV in Lottorf, in Northern Germany (54°26′37″N, 9°34′08″E), built 
on a peat grassland. This park features single-axis sun-tracking modules, posing unique scanning 
challenges due to their dynamic positioning (Figure 1).

Data acquisition
On 27 May 27 a Hovermap (Hovermap ST, Emesent, Brisbane, QLD, Australia) SLAM LiDAR 
scanner in a handheld configuration was used to scan an area of approximately 0.3 ha. During the 
953 s scanning period, 78 million points were recorded (Figure 2). Six round plate targets, each 
0.5 m in diameter, and made of red and white reflective foil, were laid out as ground control points 
(GCP), as shown in Figure 1. Their positions were measured using a real-time kinematic differential 
GPS (GR-5, Topcon, Tokyo, Japan) for accurate spatial referencing.
On the following day (28 May 2024), ground-based measurements were collected to serve as reference 
data. These included rising plate meter (RPM) measurements at various positions under and around 
the modules (n=20), as well as in the open area adjacent to the modules (n=34). The RPM is a device 
with a 15 cm radius plate that compresses the grass canopy, providing a measurement that reflects 
compressed sward height. Along two 10 m transects, sward stick measurements were conducted at 
0.2 m intervals and RPM measurements at 0.3 m intervals. In contrast to the RPM, the Sward Stick 
measures the maximum plant height at a specific point using a sliding viewfinder that is lowered 
until it makes contact with the first plant part. The RPM measurements at various positions and 
the start and end points of the transects were also measured using the same differential GPS as 
above. However, directly under the modules, GNSS measurements were not possible. To estimate 
these positions, straight lines and distances from measurable points were determined using a ruler. 
This method approximated the positions beneath the panels, compensating for GNSS limitations.

Figure 1. Study site and position of the ground measurements.
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Processing of the SLAM LIDAR point cloud
The derived point cloud was processed in Aura (Version 1.8) using the measured positions of the 
GCPs for georeferencing. The forest preset processing option was selected, as it proved most effective 
for generating a consistent point cloud in this environment. Subsequent steps were carried out in R 
(4.3.2) using the lidR package (4.1.1) and included noise filtering, classification of ground points, 
and normalization. During normalization, all points were adjusted to have elevations relative to the 
ground surface, effectively setting the ground level to zero. This allows for accurate analysis of the 
canopy’s vertical structure. Furthermore, the point cloud was manually segmented to identify and 
exclude all points corresponding to the PV modules, ensuring they were not included in subsequent 
analyses (Figure 3).

Figure 2. Visualization of the point cloud (coloured by height) acquired with the Hovermap ST and 
the trajectory (white) representing the path walked while carrying the device. The left side shows 
the area under the panels, while the right side depicts the open space area.

Figure 3. Visualization of the normalized point cloud with the points representing the PV modules 
removed.
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To extract LiDAR metrics corresponding to the RPM measurements distributed across the study area, 
circular buffer zones were created with a radius of 0.3 m around each measurement point. Along the 
transects, buffers of 0.05 m were created at every 0.1-m interval. In this study, the following LiDAR 
metrics (Hütt et al., 2023) were calculated for each observation area: the minimum, maximum, 
mean, and the 25th, 50th, 75th, 90th, and 99th percentiles of the LiDAR-derived canopy heights.

Results

As illustrated in Figure 4, the transect profiles reveal correspondences among the measurements 
obtained from the RPM, sward stick, and the SLAM LiDAR. For example, a notable peak is observed 
at approximately 8 m along the transect in the area beneath the solar panels. The sward stick profiles 
often display patterns that closely resemble the 95th percentile of the LiDAR-derived canopy heights. 
In contrast, the RPM measurements align more closely with the lower percentiles of the LiDAR data. 
However, in many cases, peaks observed in the Sward Stick measurements are not fully captured by 
the LiDAR data, and the characteristic peak at around 6 m appears to be shifted by a few centimetres. 
Furthermore, it becomes apparent that the sward exhibits high spatial variability, which seems to 
be more pronounced in the areas beneath the PV modules.

Figure 5 illustrates the relationship between compressed sward height, measured with the RPM, 
and LiDAR-derived metrics at the 25th, 50th, and 90th quantiles for open spaces (blue) and PV 
module areas (orange). The regression lines and R2 values reveal stronger correlations in open 
spaces compared to PV module areas, particularly for the 25th and 50th quantiles. Interestingly, 
R2 values improve when the data from open spaces and PV module areas are analysed separately, 
emphasizing distinct relationships in these environments. The regression lines for PV module 
areas are consistently shifted upward, indicating that LiDAR-derived canopy heights are higher 
for the same RPM values under PV modules. In contrast, the 90th quantile shows weaker overall 
correlations, reflecting greater variability in this metric.

Figure 4. RPM, sward stick, and SLAM LIDAR measurements along two transects: one beneath the 
photovoltaic (PV) modules (“solar panel area”, right) and one in open space unaffected by the PV 
modules (left).
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Discussion

This study highlights the utility of handheld SLAM LiDAR for capturing the 3D structure of grass 
swards, offering insights into vegetation height distribution in both open spaces and areas beneath 
PV modules. In open space areas, the 25th quantile of LiDAR-derived canopy height showed a 
strong correlation with RPM measurements (R2=0.88). While the agreement decreased under the 
PV modules, the 50th quantile still demonstrated a respectable R2 of 0.75. These results align with 
those of de Nobel et al. (2023), who observed similar correlations between LiDAR metrics and RPM 
measurements, which are widely known as proxies for biomass.
The observed increase in R2 values when differentiating between open spaces and areas beneath PV 
modules suggests that shading from the panels significantly impacts grass morphology and structural 
characteristics. This effect parallels patterns reported in silvopastoral systems, where tree canopies 
create sunlight deficiencies similar to those caused by the PV modules in the present study. Shading 
from PV modules may induce grass adaptations such as leaf elongation and increased specific leaf 
area, while reducing tiller production and altering biomass allocation patterns (Pontes et al., 2017). 
These structural changes likely influence the relationship between RPM measurements, as proxies 
for biomass, and LiDAR-derived canopy height metrics, underscoring the necessity to account for 
shading effects introduced by the PV modules.
In the context of FFPV, particularly beneath the PV modules, where other surveying methods such as 
multispectral imaging (e.g., Lussem et al., 2022) are ineffective due to obstructions, handheld SLAM 
LiDAR presents notable advantages. By capturing fine-scale variation in shaded or obstructed zones, 
it enables a more precise evaluation of how localized shading influences pasture growth. In this way, 
SLAM LiDAR provides a promising tool to assess the implications of solar panels on grass swards, 
potentially enhancing both understanding and management of environmental impacts. Although the 
results are preliminary and require further validation, the efficiency of SLAM LiDAR in capturing 
detailed spatial information underscores its potential utility in such complex environments.

Figure 5. Relationship between compressed sward height (measured with a rising plate meter) and 
SLAM LiDAR metrics at the 25th, 50th, and 90th quantiles. Regression lines and R2 values are shown 
for overall data (black), open space (blue), and solar panel areas (orange).
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However, the transect measurements revealed that the heterogeneity of the study area occurs on very 
small spatial scales, often within decimetres. This emphasizes the necessity for extremely precise 
localization of measurement points to ensure direct comparability between different methods. 
Achieving the required positional accuracy is significantly impeded by poor GNSS reception, 
especially beneath the PV modules. Additionally, the high costs associated with advanced equipment 
necessary for precise positioning and data collection present substantial limitations. These factors 
represent potential sources of error and should be considered when interpreting the results. To 
enhance spatial accuracy, alternative positioning solutions or the use of UAV-based remote sensing 
methods like UAV-based LiDAR or very oblique imaging could be explored to capture data under 
the PV modules.

Conclusions

In summary, the study demonstrated the potential of handheld SLAM LiDAR as an effective 
tool for assessing grass canopy structures in FFPV systems, particularly in shaded areas where 
traditional methods are limited. The significant differences in R² values between open and shaded 
areas highlighted the impact of PV modules -induced shading on grass morphology, necessitating 
adjustments in measurement approaches. Future research should focus on improving positional 
accuracy in challenging environments and validating SLAM LiDAR methodologies through 
destructive biomass sampling to strengthen the correlation between LiDAR metrics and actual 
biomass. Additionally, exploring UAV-based LiDAR systems could provide an effective means of 
capturing high-resolution spatial data, including areas beneath PV modules.
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